508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664 | def populate_my_ontology(
sex: Optional[List[str]] = ["PATO:0000384", "PATO:0000383"],
celltypes: Optional[List[str]] = [],
ethnicities: Optional[List[str]] = [],
assays: Optional[List[str]] = [],
tissues: Optional[List[str]] = [],
diseases: Optional[List[str]] = [],
dev_stages: Optional[List[str]] = [],
organisms_clade: Optional[List[str]] = ["vertebrates"], # "plants", "metazoa"],
organisms: Optional[List[str]] = ["NCBITaxon:10090", "NCBITaxon:9606"],
genes_from: Optional[List[str]] = ["NCBITaxon:10090", "NCBITaxon:9606"],
):
"""
creates a local version of the lamin ontologies and add the required missing values in base ontologies
run this function just one for each new lamin storage
erase everything with bt.$ontology.filter().delete()
add whatever value you need afterward like it is done here with:
`bt.$ontology(name="ddd", ontolbogy_id="ddddd").save()`
`df["assay_ontology_term_id"].unique()`
Args:
sex (list, optional): List of sexes. Defaults to ["PATO:0000384", "PATO:0000383"].
celltypes (list, optional): List of cell types. Defaults to [].
ethnicities (list, optional): List of ethnicities. Defaults to [].
assays (list, optional): List of assays. Defaults to [].
tissues (list, optional): List of tissues. Defaults to [].
diseases (list, optional): List of diseases. Defaults to [].
dev_stages (list, optional): List of developmental stages. Defaults to [].
organisms_clade (list, optional): List of organisms clade. Defaults to ["vertebrates", "plants"].
"""
# cell type
if celltypes is not None:
if len(celltypes) == 0:
bt.CellType.import_source()
else:
names = bt.CellType.public().df().index if not celltypes else celltypes
records = bt.CellType.from_values(names, field="ontology_id")
ln.save(records)
elem = bt.CellType(name="unknown", ontology_id="unknown")
ln.save([elem], ignore_conflicts=True)
# OrganismClade
nrecords = []
if organisms_clade is not None:
records = []
for organism_clade in organisms_clade:
names = bt.Organism.public(organism=organism_clade).df().index
source = bt.Source.filter(name="ensembl", organism=organism_clade).last()
for name in names:
try:
records.append(bt.Organism.from_source(name=name, source=source))
except DoesNotExist:
print(f"Organism {name} not found in source {source}")
prevrec = set()
for rec in records:
if rec is None:
continue
if not isinstance(rec, bt.Organism):
rec = rec[0]
if rec.uid not in prevrec:
if organisms is not None:
if rec.ontology_id not in organisms:
continue
nrecords.append(rec)
prevrec.add(rec.uid)
ln.save(nrecords)
elem = bt.Organism(name="unknown", ontology_id="unknown").save()
ln.save([elem], ignore_conflicts=True)
# Phenotype
if sex is not None:
names = bt.Phenotype.public().df().index if not sex else sex
source = bt.Source.filter(name="pato").first()
records = [
bt.Phenotype.from_source(ontology_id=i, source=source) for i in names
]
ln.save(records)
elem = bt.Phenotype(name="unknown", ontology_id="unknown").save()
ln.save([elem], ignore_conflicts=True)
# ethnicity
if ethnicities is not None:
if len(ethnicities) == 0:
bt.Ethnicity.import_source()
else:
names = bt.Ethnicity.public().df().index if not ethnicities else ethnicities
records = bt.Ethnicity.from_values(names, field="ontology_id")
ln.save(records)
elem = bt.Ethnicity(name="unknown", ontology_id="unknown")
ln.save([elem], ignore_conflicts=True)
# ExperimentalFactor
if assays is not None:
if len(assays) == 0:
bt.ExperimentalFactor.import_source()
else:
names = bt.ExperimentalFactor.public().df().index if not assays else assays
records = bt.ExperimentalFactor.from_values(names, field="ontology_id")
ln.save(records)
elem = bt.ExperimentalFactor(name="unknown", ontology_id="unknown").save()
ln.save([elem], ignore_conflicts=True)
# lookup = bt.ExperimentalFactor.lookup()
# lookup.smart_seq_v4.parents.add(lookup.smart_like)
# Tissue
if tissues is not None:
if len(tissues) == 0:
bt.Tissue.import_source()
else:
names = bt.Tissue.public().df().index if not tissues else tissues
records = bt.Tissue.from_values(names, field="ontology_id")
ln.save(records)
elem = bt.Tissue(name="unknown", ontology_id="unknown").save()
ln.save([elem], ignore_conflicts=True)
# DevelopmentalStage
if dev_stages is not None:
if len(dev_stages) == 0:
bt.DevelopmentalStage.import_source()
source = bt.Source.filter(organism="mouse", name="mmusdv").last()
bt.DevelopmentalStage.import_source(source=source)
else:
names = (
bt.DevelopmentalStage.public().df().index
if not dev_stages
else dev_stages
)
records = bt.DevelopmentalStage.from_values(names, field="ontology_id")
ln.save(records)
# Disease
if diseases is not None:
if len(diseases) == 0:
bt.Disease.import_source()
else:
names = bt.Disease.public().df().index if not diseases else diseases
records = bt.Disease.from_values(names, field="ontology_id")
ln.save(records)
bt.Disease(name="normal", ontology_id="PATO:0000461").save()
bt.Disease(name="unknown", ontology_id="unknown").save()
# genes
for organism in genes_from:
# convert onto to name
organism = bt.Organism.filter(ontology_id=organism).one().name
names = bt.Gene.public(organism=organism).df()["ensembl_gene_id"]
# Process names in blocks of 10,000 elements
block_size = 10000
for i in range(0, len(names), block_size):
block = names[i : i + block_size]
records = bt.Gene.from_values(
block,
field="ensembl_gene_id",
organism=organism,
)
ln.save(records)
|