Bases: Dataset
PyTorch Dataset for loading single-cell data from a LaminDB Collection.
This class wraps LaminDB's MappedCollection to provide additional features:
- Management of hierarchical ontology labels (cell type, tissue, disease, etc.)
- Automatic encoding of categorical labels to integers
- Multi-species gene handling with unified gene indexing
- Optional metacell aggregation and KNN neighbor retrieval
The dataset lazily loads data from storage, making it memory-efficient for
large collections spanning multiple files.
| Parameters: |
-
lamin_dataset
(Collection)
–
LaminDB Collection containing the artifacts to load.
-
genedf
(DataFrame, default:
None
)
–
DataFrame with gene information, indexed by gene ID
with an 'organism' column. If None, automatically loaded based on organisms
in the dataset. Defaults to None.
-
clss_to_predict
(List[str], default:
list()
)
–
Observation columns to encode as prediction
targets. These will be integer-encoded in the output. Defaults to [].
-
hierarchical_clss
(List[str], default:
list()
)
–
Observation columns with hierarchical
ontology structure. These will have their ancestry relationships computed
using Bionty. Supported columns:
- "cell_type_ontology_term_id"
- "tissue_ontology_term_id"
- "disease_ontology_term_id"
- "development_stage_ontology_term_id"
- "assay_ontology_term_id"
- "self_reported_ethnicity_ontology_term_id"
Defaults to [].
-
join_vars
(str, default:
None
)
–
How to join variables across artifacts.
"inner" for intersection, "outer" for union, None for no joining.
Defaults to None.
-
metacell_mode
(float, default:
0.0
)
–
Probability of returning aggregated metacell
expression instead of single-cell. Defaults to 0.0.
-
get_knn_cells
(bool, default:
False
)
–
Whether to include k-nearest neighbor cell
expression in the output. Requires precomputed neighbors in the data.
Defaults to False.
-
store_location
(str, default:
None
)
–
Directory path to cache computed indices.
Defaults to None.
-
force_recompute_indices
(bool, default:
False
)
–
Force recomputation of cached data.
Defaults to False.
|
| Attributes: |
-
mapped_dataset
(MappedCollection)
–
Underlying mapped collection for data access.
-
genedf
(DataFrame)
–
Gene information DataFrame.
-
organisms
(List[str])
–
List of organism ontology term IDs in the dataset.
-
class_topred
(dict[str, set])
–
Mapping from class name to set of valid labels.
-
labels_groupings
(dict[str, dict])
–
Hierarchical groupings for ontology classes.
-
encoder
(dict[str, dict])
–
Label encoders mapping strings to integers.
|
| Raises: |
-
ValueError
–
If genedf is None and "organism_ontology_term_id" is not in clss_to_predict.
|
Example
collection = ln.Collection.filter(key="my_collection").first()
dataset = Dataset(
... lamin_dataset=collection,
... clss_to_predict=["organism_ontology_term_id", "cell_type_ontology_term_id"],
... hierarchical_clss=["cell_type_ontology_term_id"],
... )
sample = dataset[0] # Returns dict with "X" and encoded labels
Methods:
define_hierarchies
Define hierarchical label groupings from ontology relationships.
Uses Bionty to retrieve parent-child relationships for ontology terms,
then builds groupings mapping parent terms to their descendants.
Updates encoders to include parent terms and reorders labels so that
leaf terms (directly predictable) come first.
| Parameters: |
-
clsses
(List[str])
–
List of ontology column names to process.
|
| Raises: |
-
ValueError
–
If a class name is not in the supported ontology types.
|
Note
Modifies self.labels_groupings, self.class_topred, and
self.mapped_dataset.encoders in place.
Source code in scdataloader/data.py
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378 | def define_hierarchies(self, clsses: List[str]):
"""
Define hierarchical label groupings from ontology relationships.
Uses Bionty to retrieve parent-child relationships for ontology terms,
then builds groupings mapping parent terms to their descendants.
Updates encoders to include parent terms and reorders labels so that
leaf terms (directly predictable) come first.
Args:
clsses (List[str]): List of ontology column names to process.
Raises:
ValueError: If a class name is not in the supported ontology types.
Note:
Modifies self.labels_groupings, self.class_topred, and
self.mapped_dataset.encoders in place.
"""
# TODO: use all possible hierarchies instead of just the ones for which we have a sample annotated with
self.labels_groupings = {}
self.class_topred = {}
for clss in clsses:
if clss not in [
"cell_type_ontology_term_id",
"tissue_ontology_term_id",
"disease_ontology_term_id",
"development_stage_ontology_term_id",
"simplified_dev_stage",
"age_group",
"assay_ontology_term_id",
"self_reported_ethnicity_ontology_term_id",
]:
raise ValueError(
"class {} not in accepted classes, for now only supported from bionty sources".format(
clss
)
)
elif clss == "cell_type_ontology_term_id":
parentdf = (
bt.CellType.filter()
.df(include=["parents__ontology_id", "ontology_id"])
.set_index("ontology_id")
)
elif clss == "tissue_ontology_term_id":
parentdf = (
bt.Tissue.filter()
.df(include=["parents__ontology_id", "ontology_id"])
.set_index("ontology_id")
)
elif clss == "disease_ontology_term_id":
parentdf = (
bt.Disease.filter()
.df(include=["parents__ontology_id", "ontology_id"])
.set_index("ontology_id")
)
elif clss in [
"development_stage_ontology_term_id",
"simplified_dev_stage",
"age_group",
]:
parentdf = (
bt.DevelopmentalStage.filter()
.df(include=["parents__ontology_id", "ontology_id"])
.set_index("ontology_id")
)
elif clss == "assay_ontology_term_id":
parentdf = (
bt.ExperimentalFactor.filter()
.df(include=["parents__ontology_id", "ontology_id"])
.set_index("ontology_id")
)
elif clss == "self_reported_ethnicity_ontology_term_id":
parentdf = (
bt.Ethnicity.filter()
.df(include=["parents__ontology_id", "ontology_id"])
.set_index("ontology_id")
)
else:
raise ValueError(
"class {} not in accepted classes, for now only supported from bionty sources".format(
clss
)
)
cats = set(self.mapped_dataset.encoders[clss].keys())
groupings, _, leaf_labels = get_ancestry_mapping(cats, parentdf)
groupings.pop(None, None)
for i, j in groupings.items():
if len(j) == 0:
# that should not happen
import pdb
pdb.set_trace()
groupings.pop(i)
self.labels_groupings[clss] = groupings
if clss in self.clss_to_predict:
# if we have added new clss, we need to update the encoder with them too.
mlength = len(self.mapped_dataset.encoders[clss])
mlength -= (
1
if self.mapped_dataset.unknown_label
in self.mapped_dataset.encoders[clss].keys()
else 0
)
for i, v in enumerate(
set(groupings.keys())
- set(self.mapped_dataset.encoders[clss].keys())
):
self.mapped_dataset.encoders[clss].update({v: mlength + i})
# we need to change the ordering so that the things that can't be predicted appear afterward
self.class_topred[clss] = leaf_labels
c = 0
update = {}
mlength = len(leaf_labels)
mlength -= (
1
if self.mapped_dataset.unknown_label
in self.mapped_dataset.encoders[clss].keys()
else 0
)
for k, v in self.mapped_dataset.encoders[clss].items():
if k in self.labels_groupings[clss].keys():
update.update({k: mlength + c})
c += 1
elif k == self.mapped_dataset.unknown_label:
update.update({k: v})
self.class_topred[clss] -= set([k])
else:
update.update({k: v - c})
self.mapped_dataset.encoders[clss] = update
|
get_label_cats
Get combined categorical codes for one or more label columns.
Retrieves labels from the mapped dataset and combines them into a single
categorical encoding. Useful for creating compound class labels for
stratified sampling.
| Parameters: |
-
obs_keys
(str | List[str])
–
Column name(s) to retrieve and combine.
|
| Returns: |
-
ndarray
–
np.ndarray: Integer codes representing the (combined) categories.
Shape: (n_samples,).
|
Source code in scdataloader/data.py
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227 | def get_label_cats(
self,
obs_keys: Union[str, List[str]],
) -> np.ndarray:
"""
Get combined categorical codes for one or more label columns.
Retrieves labels from the mapped dataset and combines them into a single
categorical encoding. Useful for creating compound class labels for
stratified sampling.
Args:
obs_keys (str | List[str]): Column name(s) to retrieve and combine.
Returns:
np.ndarray: Integer codes representing the (combined) categories.
Shape: (n_samples,).
"""
if isinstance(obs_keys, str):
obs_keys = [obs_keys]
labels = None
for label_key in obs_keys:
labels_to_str = self.mapped_dataset.get_merged_labels(label_key)
if labels is None:
labels = labels_to_str
else:
labels = concat_categorical_codes([labels, labels_to_str])
return np.array(labels.codes)
|
get_unseen_mapped_dataset_elements
Get genes marked as unseen for a specific sample.
Retrieves the list of genes that were not observed (expression = 0 or
marked as unseen) for the sample at the given index.
| Parameters: |
-
idx
(int)
–
Sample index in the dataset.
|
| Returns: |
-
list[str]
–
List[str]: List of unseen gene identifiers.
|
Source code in scdataloader/data.py
229
230
231
232
233
234
235
236
237
238
239
240
241
242 | def get_unseen_mapped_dataset_elements(self, idx: int) -> list[str]:
"""
Get genes marked as unseen for a specific sample.
Retrieves the list of genes that were not observed (expression = 0 or
marked as unseen) for the sample at the given index.
Args:
idx (int): Sample index in the dataset.
Returns:
List[str]: List of unseen gene identifiers.
"""
return [str(i)[2:-1] for i in self.mapped_dataset.uns(idx, "unseen_genes")]
|