
Ph.D. Thesis Project: Deep learning approaches

as predictors of the cell’s regulatory networks

Summary

Single-cell transcriptomics (scRNA-seq) has revolutionized biology and medicine by
unrevealing the diversity of the cells constituting human tissues. However, the complex task
of inferring gene regulatory networks has not yet profited from this revolution and tools have
not been predictive enough to reach any usability. Knowing such a network for each cell type
is expected to provide a more comprehensive view of the cell’s states and explain some of
the different cellular phenotypes and responses of the cells.

The aim of this Ph.D. project is to develop novel approaches using deep learning and
specifically novel graph neural network approaches on large scRNAseq datasets, to assess
their predictability in high-quality benchmarks and package them as an open-source Python
library.

The methods developed during this project will be applied in collaboration with wet-lab
biologists, in order to derive new biological knowledge from their in-house data.

This PhD project will impact both computational fields and biomedical fields, by developing
rigorous methods that can reliably maximize the information extracted from complex
multimodal datasets. In particular, applications of the tool will contribute to personalized
medicine.

Background and objectives

Single-cell omics. Single-cell RNA sequencing (scRNA-seq) has revolutionized biology and
medicine by unrevealing the diversity of the cells constituting human tissues. The possibility
to assess cellular heterogeneity at a previously inaccessible resolution has profoundly
impacted our understanding of development, of the immune system functioning, and of
many diseases.

Gene regulatory network prediction. The task of inferring gene regulatory networks is
complex and only informs part of the overall gene regulation. The regulation of a gene’s
expression is linked to promoters & enhancers, both distal and proximal, bound by
transcription factors (TFs). But many other components can have an effect on the
transcriptome: co-factors, histone & RNApol2 binders, as well as RNA binding proteins
(RBPs), non-coding RNAs binding at the DNA and RNA level, gene localization, and genomic
mutations changing the processing and degradation speed of RNA, can also have an impact.



Moreover, it is known that TFs have combinatorial, competitive, and compensating effects
on gene expression. Whereby one can readily replace another and two TFs combined can
have a different effect than the sum of their part.

Existing methods. Gene Regulatory Networks (GRN)s have often been constrained to
TF-gene relationships. Typically from co-Expression networks, derived from the gene
expression correlation across many RNAseq measurements. Other methods only use this as
a base for TF-gene relationships, then epigenetic sequencing methods like ChIP-seq &
ATAC-seq, help refine these coarse models by knowing the putative binding of TFs to
proximal regulatory elements of such genes.

However, these methods are all giving measurements averaged over many different cells.
They also do not inform on the direct relationship between a TF and a gene. for that, other
methods have been developed and are low throughput and rarely used.

With scRNA-seq becoming so widespread, we have seen the rise of databases recouping
tens of millions of measurements across a wide range of contexts. This led to the
development of easy-to-use tools and pipelines to interrogate this data size. Foundation
models are promising to learn from and correct batch effects across these millions of
measurements. The knowledge within their weights could be used for many downstream
tasks. However, they are still poorly trained. Have transformer layers that are not suited for
the RNAseq modality and make -often false- predictions that are hard to interpret.

Graph Neural Networks (GNN)s: are a class of deep learning models designed to operate on
graph-structured data. They are specifically tailored to handle and process data that can be
represented as graphs, where the elements (nodes or vertices) in the graph are connected by
edges.

Traditional neural networks are primarily designed for processing grid-like data such as
images or sequential data such as text. However, GNNs extend this capability to
graph-structured data by incorporating graph-related operations and architectures.

The key idea behind GNNs is to learn node representations by aggregating and combining
information from their neighboring nodes in the graph. In other words, GNNs allow each
node to gather information from its direct neighbors and use that information to update its
own representation. This neighborhood aggregation process is typically repeated iteratively
for multiple layers to capture increasingly complex patterns and dependencies in the graph.

Objectives.We wish to improve GRN predictions from scRNAseq data. Our approach is by:

- Using larger neural network models that scale linearly with the dataset size,
taking advantage of the 10Ms of data points now becoming available.

- Using novel GNN layers that could reduce the “search space” of the model by
constraining the set of possible topologies it is learning.

- Better pretraining and fine-tuning these models to the predictive task they
have to perform and the constraints of the system they are predicting.



- Formulating better layers that correspond to the sparse interactions between
genes and our current knowledge about their functions.

- Creating formal and rational benchmarks that best capture the ability of a
GRN methodology.

- Assessing predictions and any usefulness or lack of it by having biologist test
hypotheses using the model.

Impact of the project. This Ph.D. project will thereby contribute to methodological
breakthroughs by providing new tools and methods to use neural networks on unstructured
data, like scRNAseq. And to improve on the state of the art in GRNs prediction from
scRNAseq.

The proposed methodologies will impact computational (bioinformatics, machine learning)
and biomedical fields. Fields that would be facing similar challenges that could be solved by
GNN layers, as well as other fields taking advantage of scRNAseq profiles, such as
environmental research, industrial biotechnology, and biofuel studies.

The impact of our methods will be further enhanced by open-source distribution.
Concerning the expected applications of our methods, GRN inference per cell type is
expected to impact the clinic in the context of precision medicine.

Detailed description of the project

This project is organized into three Work Packages (WP)s, WP1 and WP2 will be devoted to
the formulation, implementation, and testing of the methods while WP3 will be devoted to
delivering usable tools and experimental results through their application in collaboration
with wet-lab biologists.

WP1: Review of current tools and creation of a set of benchmarks

The first step is to review the fundamental question of what are GRNs. What are their
limitations and what kind of inferences we can do? From that and the review of the existing
benchmarking methods, we will define what exactly comprises the task of GRN inference
and what we consider good benchmarks for it.

For example, a GRN should allow us to predict gene knockout effects from experiments such
as perturb-seq[] on both high[] and low-time resolution measures. It should allow us to
predict cell differentiation trajectories[]. overall, considering the likely complexity of the
GRNs, the goal is also one of interpretability for the community.

A good benchmark should thus review all of these requirements from existing methods.

WP2: GNN model/layers to better predict TF-gene relationships

We posit that the best model is one that can scale linearly to the data size of scRNAseq
samples. One that can learn in an unsupervised way, across datasets. Based on



architectures such as the variational auto-encoder models for scRNAseq[] and the more
recent transformer models[] seem well suited.

However, although great similarities exist between GNNs and transformers[], GNNs have
proven abilities through their equivariances and transformers currently lack good,
meaningful positional encoding for unstructured data like scRNAseq. Improvement in either
to tailor them to the problem at hand would yield significant improvement that could extend
to other applications of neural networks.

Moreover, the tool could be pre-trained or reuse models pre-trained on large scRNAseq
databases like CellxGene[] to take advantage of all the data accumulated in the community.
It might also help decrease the model’s bias toward various batch effects and mislabeling.

We will then assess the abilities of this method of inference and of the addition of GNN
layers jointly and separately to understand how each is improving performances.

Finally getting something such as a scaling law for large unsupervised models on scRNAseq
would

WP3: Collaboration to test the model’s prediction on novel data

Collaborative projects are the workhorse of interdisciplinary science and became even more
impactful through the last decade. During this Ph.D. project, the goal is also to collaborate
with biologists to assess the model prediction. Moreover, collaboration on specific biological
questions would help assess the usefulness of our tool and possibly improve it or help
define new avenues of research. The Cantini group and the Ph.D. students have contacts
with experimentalists at Institut Pasteur, but also at Dana Farber Cancer Insitute, Broad
Institute.

Additionally, if time allows, collaborations could be envisioned with computational labs. It is
possible that, like other ML problems, the best performance on the task of GRN inference will
be achieved in the future through large generalist pre-trained models also called “foundation”
models. Such models are being designed in some labs and will need specific re-design,
fine-tuning, and assessment. Taking advantage of previously gained expertise on this task.
The Ph.D. end on a joint project over such a foundation model.

Provisional Schedule

1. WP1: Sept 2023 - Jan 2024 (4 months) Review of current tools and creation of a set
of benchmarks

2. WP2: Jan 2024 - Dec 2024 (10 months) GNN model/layers to better predict TF-gene
relationships.

3. WP3: Sept 2024 - Jul 2025 (6 months) Collaboration to test the model’s prediction on
novel data.

4. Buffer Time (16 months) writing papers (3mo), writing the thesis (2mo), posters,
events, time off (5mo) additional collaborations (6mo).
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